
Journal of Computational Physics 222 (2007) 217–245

www.elsevier.com/locate/jcp
An exact Riemann solver for compressible two-phase
flow models containing non-conservative products

Vincent Deledicque, Miltiadis V. Papalexandris *
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Abstract

In this article we present a new numerical procedure for solving exactly the Riemann problem of compressible two-
phase flow models containing non-conservative products. These products appear in the expressions for the interactions
between the two phases. Thus, in the compressible limit, the governing equations are hyperbolic but can not be written
as conservation laws, i.e. in divergence form. In general, the solution to the Riemann problem of these models contains
six distinct centered waves. According to the relative position of these waves in the x–t plane, the possible solutions
can be classified into four principal configurations. The Riemann solver we propose herein investigates sequentially each
of these configurations until an admissible solution is calculated. Special configurations, corresponding to coalescence of
waves, are also analyzed and included in the solver. Further, we examine the accuracy and robustness of three known
methods for the integration of the non-conservative products, via a series of numerical tests. Finally, the issue of existence
and uniqueness of solutions to the Riemann problem is discussed.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this article we derive a numerical procedure for solving exactly the Riemann problem associated to com-
pressible two-phase flow models that contain non-conservative products. Such flows arise in various natural
phenomena and technological applications, such as sandstorms, volcanic eruptions, power plants, chemical
plants, solid rocket motors, deflagration-to-detonation transition in granular explosives, and others. These
flows are quite hard to study because of the existence of a multitude of spatial and temporal scales and because
of the complexity of the interactions between the two phases. Nevertheless, their wide applicability has stim-
ulated, over the years, large efforts for their better understanding. In particular, the modelling and numerical
treatment of these flows have been the subject of extensive and intense research.
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Typically, two-phase models are derived by either an averaging (kinetic based) approach or a mixture-
theory approach. In the averaging approach one considers that one phase consists of an ensemble of parti-
cles embedded in a carrier fluid medium. The particles can interact with each other in a prescribed way
(e.g. collisions, coalescences, etc.). The number density of particles in an appropriate phase space, (e.g. coor-
dinate-velocity space) is the distribution function and obeys a Boltzmann-type equation. This equation can be
integrated over the phase space to yield the balance equations for the medium, Drew and Passman [1], Enwald
et al. [2]. This procedure, referred to as ensemble averaging, can be replaced by time or volume averaging pro-
vided that the ergodic hypothesis is satisfied.

On the other hand, mixture theories treat the mixture as a multicomponent fluid. In other words, the mix-
ture is assumed to consist of two separate, identifiable and co-existing continua that are in thermodynamic
non-equilibrium with each other. The balance equations of each phase are derived by heuristic approaches
or, more appropriately, by exploiting the entropy inequality of the mixture. Examples of mixture-theory mod-
els for compressible two-phase flows are the BN model of Baer and Nunziato [3], as well as those of Powers
et al. [4], Saurel and Abgrall [5], Bdzil et al. [6] and Papalexandris [7], etc.

Most of the two-phase models contain non-conservative products, that is, terms with spatial derivatives
that can not be written in divergence form. These terms are part of the expressions that describe momentum
and energy transfer between the two phases. In the literature of two-phase flows, they are often referred to as
nozzling terms by analogy to similar terms that appear in the equations of 1D flow in variable-area duct. In
some modelling and numerical studies these terms have been ignored either by choice, Gonthier and Powers
[8], or by convenience, Papalexandris [9]. However, these terms are required to guarantee that the entropy
inequality is satisfied. For this reason, it is generally accepted that the nozzling terms should be included in
the balance equations of the two-phase mixture.

The presence of these terms introduces serious analytical and computational difficulties. In particular, these
terms do not permit the balance equations to be written in conservative (divergence) form in the hyperbolic
limit. (That is, in the limit where viscosity and other dissipative terms are zero.) As a result, weak solutions
of these equations can not be defined in the standard sense of distributions. In particular, jump, Rankine–
Hugoniot, relations across discontinuities can not be defined in an unambiguous manner. Although there
has been recent progress in the mathematical analysis of non-conservative hyperbolic equations (see, e.g.
Dal Maso et al. [10], Lefloch and Tzavaras [11] and Crasta and Lefloch [12]), an existential theory for such
equations is not yet available. More important, it has been demonstrated that due to the non-conservative
products, the balance equations admit more than an unique solution under certain flow conditions, Andrianov
and Warnecke [13] and Andrianov [29].

Because of these serious analytical difficulties, the derivation of efficient algorithms for the numerical treat-
ment of the balance equations becomes a very challenging task. Additionally, since the non-conservative prod-
ucts do not represent fluxes, they have to be integrated as source terms. Numerical evidence has shown that
there can be numerical instabilities and spurious oscillations from the integration of these terms, even when
the balance equations admit a unique solution [13].

Nevertheless, non-conservative, compressible, two-phase flow models share an important property that
facilitates their analysis: the balance equations of the mixture are in fact conservative. As shown by Embid
and Baer [14], this implies that Rankine–Hugoniot relations can always be defined provided that a gaseous
shock does not move at the solid phase speed. As will be shown later, the last condition can occur only when
the gaseous shock coincides with a solid contact discontinuity, which is a very special case. In addition to this,
the authors in [14] derived the Riemann invariants and constructed simple wave solutions of the BN model. It
is worth mentioning that although the analysis in [14] was made for the BN model, the results hold for a
broader class of two-phase flow models, e.g. [3,5–7], as the homogeneous part of all these models is the same.

Recently, there has also been progress in the construction of numerical methods for the flow models of
interest. For example, Saurel and Abgrall [5], Saurel and Lemetayer [15] and Gavrilyuk and Saurel [16] pre-
sented numerical approximations of the nozzling terms based on a condition of Abgrall [17]. This condition
states that a two-phase flow with initially uniform velocity and pressure should remain as such for all times.

On the other hand, a large number of numerical methods for hyperbolic conservation laws employ an exact
or approximate solution of the local Riemann problem at the cell interfaces in order to advance the solution in
time. All these algorithms belong to the family of Godunov-based methods and the literature on this subject is
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vast. Applying these popular numerical methods to two-phase flows requires the design of an efficient and
robust Riemann solver for the non-conservative governing system. It also requires the development of an
accurate method for the integration of the non-conservative products.

A step toward this direction was made by Andrianov and Warnecke [13] who studied the inverse Riemann
problem and provided solutions to it by employing the results of [14]. In a very recent paper, Schwendeman
et al. [18] provided the first exact Riemann solver of the flow models of interest and a numerical procedure for
the integration of non-conservative products. This solver is a two-stage method. In the first stage it is assumed
that there is no initial jump in the volume fractions of the two phases. The pressures in the intermediate states
are then calculated via two independent Newton iterations. The second stage takes into account the jump in
the volume fractions and employs an additional Newton iteration to determine the intermediate states.

In this article we propose a different procedure for obtaining numerical solutions to the Riemann problem
of interest. In particular, the algorithm proposed herein is based on grouping the possible solutions into four
principal configurations, according to the relative ordering of the centered waves that are generated as the ini-
tial conditions evolve. The admissibility of each configuration is examined sequentially, and the intermediate
states are calculated via two secant iterations. Special configurations, corresponding to coalescence of waves,
are also analyzed and included in the solver.

In this article we also compare the efficiency of three known methods for the integration of the non-con-
servative products through a series of numerical tests. In these comparisons we used the classical Godunov
scheme with the Riemann solver proposed herein. The most efficient of these three methods is extended to sec-
ond-order accuracy and implemented in a MUSCL-type scheme.

Finally, we discuss briefly the issue of ill-posedness of the Riemann problem. As it turns out, under certain
initial conditions, there is more than one entropy satisfying solution. Furthermore, there are initial conditions
for which the Riemann problem does not admit any solution at all. As it turns out, such initial conditions can
be obtained by slightly perturbing initial data for which solutions do exist, which indicates a severe break-
down of the validity of the two-phase flow model.

This article is organized as follows: in Section 2, we summarize the results of the characteristic analysis of
[14]. In Section 3, we present the various possible wave configurations to the Riemann problem. The descrip-
tion of the proposed solver is given in Section 4. A brief description of available methods for the numerical
integration of the non-conservative products is given in Section 5. Numerical results obtained by these meth-
ods are presented and compared in Section 6. Finally, in Section 7 we discuss the issue of ill-posedness of the
Riemann problem.

2. Presentation of the governing equations and their characteristic analysis

As mentioned in Section 1, the homogeneous part of many compressible two-phase flow models,
namely [3,5–7], is the same. This article focuses precisely on the Riemann problem associated to this com-
mon system of homogeneous equations. In this section, and in order to facilitate the presentation of the
proposed Riemann solver, we present the set of homogeneous system of interest and summarize the results
of its characteristic analysis presented in [14]. In this set of equations there is no characteristic length scale
and, therefore, the solution to the Riemann problem is self-similar, i.e. the speeds of centered waves are
constant.

It should be mentioned that the various available two-phase flow models have different algebraic source
terms that describe phase interactions. This implies that, in principle, one should consider the Riemann prob-
lem for a full model (including source terms), and not just its homogeneous part. The full, non-homogeneous
Riemann problem is no longer self similar, since the source terms introduce characteristic length scales. In
other words, the waves that form the solution to the Riemann problem do not have constant speeds anymore.
Therefore, the non-homogeneous Riemann problems of the various models are different to each other.

However, for numerical purposes it suffices to consider the (common) homogeneous Riemann problem pro-
vided that at small times the solution of the full, non-homogeneous problem converges to the solution of the
homogeneous one. Although there are heuristic arguments that can be used to justify such a hypothesis for
certain flow conditions, the convergence of the non-homogeneous Riemann problem to the homogeneous
one, as time goes to zero, has not been proven yet.
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The models under consideration treat each phase as two separate and co-existing continua. Herein, for
the sake of simplicity in notation we will refer to the carrier phase as the gaseous phase and to the
particulate one as the solid phase, although the models of interest can also be applied to mixtures Rie-
mann problem to a homogeneous one as consisting of liquid particles in a gas, or gaseous bubbles in
a liquid.

Each phase is assigned a density qa, pressure pa, specific internal energy ea, velocity ua and a volume fraction
/a, where a = g, s, and g and s denote the carrier ‘‘gaseous’’ phase and the particulate ‘‘solid’’ phase, respec-
tively. The volume fractions represent the percentages of volume occupied by the constituents. Also, let Ta, ga,
ha = ea + pa/qa and Ea ¼ ea þ u2

a
2
, denote the temperature, specific entropy, specific enthalpy and total specific

energy for each phase, respectively.
The governing equations consist of the mass, momentum and energy balance laws for each phase plus a

convection equation for the solid volume fraction,
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o/gqgug

ot
þ
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¼ �pgus
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; ð1fÞ

o/s

ot
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o/s

ox
¼ 0: ð1gÞ
It is also assumed that the following saturation condition holds:
/g þ /s ¼ 1: ð2Þ
The above system is closed with the equations of state for each phase. It is assumed herein that the state equa-
tions are convex. Embid and Baer [14] performed a detailed characteristic analysis of the present model, a nec-
essary task for the resolution of the Riemann problem. We rewrite here the most important results that they
obtained. These results are independent of the equations of state.

The eigenvalues of the system are
k�s ¼ us � cs; k0
s ¼ us; kþs ¼ us þ cs; ð3aÞ
and
k�g ¼ ug � cg; k0
g ¼ ug; kþg ¼ ug þ cg; ð3bÞ
where cs, cg denote the sound speed of the solid and gaseous phases, respectively.
The system under consideration is not strictly hyperbolic because k0

s is a double eigenvalue and because cer-
tain eigenvalues can coalesce. The fields associated with k�s , kþs , k�g and kþg , are genuinely non-linear, whereas
the fields associated with k0

s and k0
g, are linearly degenerate. These linearly degenerate fields are the solid and

gaseous contact discontinuities and they propagate at speeds equal to k0
s and k0

g, respectively. The eigenvectors
of the system form a basis of R7 except when ug ± cg = us (choked flow). The system is therefore completely
hyperbolic except in choked flow conditions.

The Riemann problem of the above system admits rarefactions, contact discontinuities and shock waves.
Across rarefactions and contact discontinuities certain quantities (Riemann invariants) are conserved.

Riemann invariants across a gaseous rarefaction:
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w�g1 ¼ gg; ð4aÞ

w�g2 ¼ ug �
Z

q�1
g cg dqg; ð4bÞ

w�g3 ¼ /g; ð4cÞ
w�g4 ¼ qs; ð4dÞ
w�g5 ¼ us; ð4eÞ
w�g6 ¼ gs; ð4fÞ

Riemann invariants across a solid rarefaction:

w�s1 ¼ gs; ð5aÞ

w�s2 ¼ us �
Z

q�1
s cs dqs; ð5bÞ

w�s3 ¼ /s; ð5cÞ
w�s4 ¼ qg; ð5dÞ
w�s5 ¼ ug; ð5eÞ
w�s6 ¼ gg: ð5fÞ

It is useful to note that the volume fractions are conserved across rarefactions, cf. (4c) and (5c). Furthermore,
the above equations imply that the state of one phase remains constant across the rarefaction of the other
phase. In other words (4d) and (4f) imply that the solid pressure, temperature, and internal energy are constant
across a gaseous rarefaction, and vice versa.

It is also interesting to mention that for some simple equations of state, notably for a perfect gas, the above
Riemann invariants take the form of simple algebraic expressions that can be easily used for numerical pur-
poses. However, for complex equations of state (e.g. Tait equation), the computation of the Riemann invar-
iants, especially (4b) and (5b), requires some iterative procedure.

The invariants across contact discontinuities are:

Riemann invariants across a gaseous contact discontinuity:
w0
g1 ¼ ug; ð6aÞ

w0
g2 ¼ pg; ð6bÞ

w0
g3 ¼ /s; ð6cÞ

w0
g4 ¼ qs; ð6dÞ

w0
g5 ¼ us; ð6eÞ

w0
g6 ¼ gs: ð6fÞ

Riemann invariants across a solid contact discontinuity:

w0
s1 ¼ us; ð7aÞ

w0
s2 ¼ gg; ð7bÞ

w0
s3 ¼ /gqgðus � ugÞ; ð7cÞ

w0
s4 ¼ /sps þ /gpg þ /gqgðus � ugÞ2; ð7dÞ

w0
s5 ¼
ðus � ugÞ2

2
þ hg: ð7eÞ
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It is clear from Eq. (6) that the solid phase variables remain constant across gaseous contact lines, as was the
case for gaseous rarefactions. On the contrary, Eq. (7) imply that the gaseous state does not remain constant
across a solid contact line. However, the mass, momentum and energy of the mixture are conserved across a
solid contact discontinuity, cf. (7c)–(7e), respectively.

It is also interesting to note that, by virtue of the invariant w0
s3, if us > ug on one side of the solid contact

discontinuity, then necessarily us > ug on the other side also. That means that the gas flow relative to the solid
phase (and hence relative to the solid contact discontinuity) is in the same direction on both sides of the dis-
continuity, thus avoiding mass accumulation on the discontinuity.

As far as numerical procedures are concerned, we remark that the invariants across a gaseous contact line
are trivial to compute. However, the computation of (7) may present some difficulties. In fact, the system (7)
may admit zero, one or two solutions. This implies that, given the flow variables on one side of the contact
line, we might not be able to unambiguously compute the flow variables on the other side.

For the sake of argument, let us suppose that the gaseous phase is a perfect gas and let cg denote the con-
stant ratio of its specific heats. Further, let the subscript ‘‘L’’ refer to the left state and the subscript ‘‘R’’ refer
to the right one, and assume knowledge of pgL, qgL, ugL, /gL, psL and usL. We also assume knowledge of /gR.
By rearranging the Riemann invariants (7), we arrive at the following equation for the gaseous density on the
right side of the solid contact line [13]:
F ðqgRÞ �
1

2

M

/gRqgR

 !2

þ
cgggLq

cg�1

gR

cg � 1
� E ¼ 0; ð8Þ
where
M ¼ /gLqgLðugL � usLÞ; ð9Þ

E ¼ ðugL � usLÞ2

2
þ

cg

cg � 1

pgL

qgL

: ð10Þ
(Note that the knowledge of the left solid density is not required.)
The function F is not strictly monotone. It has a minimum at q� ¼ M2

/2
gRcgggR

� � 1
cgþ1

. So if F(q*) > 0 there is no

solution to Eq. (8), if F(q*) = 0 there is one solution, and if F(q*) < 0 there are two solutions. In the latter case,
it can be shown that the smaller of the two solutions implies that ðugR � usRÞ2 � c2

sR > 0, whereas the larger one
implies that ðugR � usRÞ2 � c2

sR < 0. Andrianov and Warnecke [13] gave a criterion to select the admissible
solution based on a continuity argument. This criterion requires that the signs of the term ðug � usÞ2 � c2

s have
to be the same on both sides of the solid contact discontinuity. This condition will further be referred as the
‘‘Andrianov and Warnecke criterion’’.

We further proceed to present the jump (Rankine–Hugoniot) relations across shock waves. These relations
can be obtained by noting that the balance equations for the mixture are in conservation form [14]. Also, by
combining (1a) and (1g) we can obtain a hyperbolic conservation law for the solid density. In summary, we have,
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These equations, supplemented by the continuity equations for each phase (1a), (1d) can yield the desired Ran-
kine–Hugoniot relations:
½/gqgU g� ¼ 0; ð12aÞ
½/sqsU s� ¼ 0; ð12bÞ

/s qsU
2
s þ ps

� �� �
þ /g qgU 2

g þ pg

� 	h i
¼ 0; ð12cÞ

/sqsU s hs þ
U 2

s

2

� �
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þ /gqgU g hg þ

U 2
g

2

 !" #
¼ 0; ð12dÞ

½qsU s� ¼ 0; ð12eÞX
k¼g;s

½/kqkgkUk�P 0; ð12fÞ
where [Æ] denotes the jump of a quantity across the shock. Also, in the above expression, Us = us � uD and
Ug = ug � uD, with uD being the shock speed.

If Us 6¼ 0, that is if the discontinuity does not travel at the local solid phase speed us (12b) and (12e) yield:
[/s] = 0. In this case the non-conservative products are zero on both sides of the shock and, therefore, the bal-
ance laws of the two phases decouple from one another. Moreover, in the absence of non-conservative prod-
ucts, these balance laws constitute a system of hyperbolic conservation laws. The jump relations for this
system are the following:
½/gqgU g� ¼ 0; ð13aÞ

/g qgU 2
g þ pg

� 	h i
¼ 0; ð13bÞ

/gqgU g hg þ
U 2

g

2

 !" #
¼ 0; ð13cÞ

½/sqsU s� ¼ 0; ð13dÞ
/s qsU

2
s þ ps

� �� �
¼ 0; ð13eÞ

/sqsU s hs þ
U 2

s

2

� �
 �
¼ 0; ð13fÞ

½/s� ¼ 0; ð13gÞX
k¼g;s

½/kqkgkUk�P 0: ð13hÞ
These relations are the classical Rankine–Hugoniot relations of gas dynamics written for each phase. In par-
ticular, the jump in one phase is totally independent of the flow variables of the other phase. So generally,
across a shock, the state of one phase will be discontinuous while the state of the other phase will remain con-
stant. Obviously, one can expect particular cases where a solid shock and a gaseous shock coincide.

On the other hand, when Us = 0, that is if the discontinuity moves at the local solid particle speed, the sys-
tem reduces to
½us� ¼ 0; ð14aÞ
½/gqgðug � usÞ� ¼ 0; ð14bÞ
½/sps þ /gpg þ /gqgðug � usÞ2� ¼ 0; ð14cÞ

/gqgðug � usÞ hg þ
ðug � usÞ2

2

 !" #
¼ 0: ð14dÞ
This system of equations is similar to the system (7) for the invariants across the solid contact discontinuity,
except for the fact that (14) has one degree of freedom more than (7) has. This is so because the gaseous en-
tropy is not conserved across the shock, whereas it is conserved across a solid contact discontinuity.
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3. Wave configurations

The solution to the Riemann problem consists of different uniform intermediate states between the initial
left and right states, covering the entire t P 0 semi-plane. These states are separated by centered waves that
can be either shocks or contact discontinuities or rarefactions of the solid or gaseous phases. For a system
of N equations there are in general N waves. In this case, however, k0

s ¼ us is a double eigenvalue and, there-
fore, there can be at most six waves and five intermediate states. For the numerical solution of the Riemann
problem it is important to determine the configuration of the waves, i.e. their relative ordering. The analysis
and grouping of the possible configurations is investigated in this section.

Let C0
g and C0

s denote the gaseous and solid contact discontinuity, respectively. Since k0
g > k�g and k0

g < kþg ,
the gaseous contact C0

g will always lie between the other two waves associated with the gaseous phase. Let C�g
and Cþg denote the gaseous waves on the left and right of the gaseous contact, respectively. They can be either
shocks or rarefactions. Similarly, the solid contact will lie between the other two waves of the solid phase C�s ,
Cþs , which can also be either shocks or rarefactions.

It is obvious that the number of possible wave configurations can be very large. This is probably the main
difficulty in the development of an efficient Riemann solver for the system of Eq. (1). Nevertheless, the char-
acteristic analysis of our system shows that, across the various waves, the flow variables of one phase evolve
independently of the variables of the other phase, except in the case of the solid contact discontinuity. In par-
ticular, the solid volume fraction /s remains constant across the solid and gaseous rarefactions and across the
gaseous contact. It also remains constant across a gaseous shock that does not propagate at the solid velocity,
i.e. when Us 6¼ 0. Later in this section we show that Us = 0 is possible only when the gaseous shock coincides
with the solid contact discontinuity, which is a very special case.

From the above, it becomes clear that there is a simple way to classify the possible wave configurations
based on the relative position of the solid contact discontinuity, C0

s . And since C0
s lies always between C�s

and Cþs , one has only to take account of the relative position of C0
s with respect to the waves of the gaseous

phase.
At this stage we will make the distinction between configurations for which the solid contact does not coin-

cide with a gaseous wave, and configurations for which it does. The former ones will be referred to as principal
configurations because these are the configurations that are encountered most of the time. The later ones will
be referred to as special configurations, since they arise only in special circumstances, for example, when two
eigenvalues coalesce.

3.1. Principal configurations

Let sL, gL denote the gaseous and solid states on the left of the initial discontinuity (i.e. along x < 0, t = 0)
and sR, gR denote the states on its right, (i.e. along x > 0, t = 0). The intermediate states from left to right are
denoted by s1, g1, s2, g2, etc.

There are four different principal configurations, namely Configurations 1, 2, 1 0 and 2 0. They are repre-
sented schematically in Fig. 1. In Configuration 1, C0

s lies on the left of C�g . In Configuration 2, C0
s lies between

C�g and Cþg . Finally, Configurations 1 0 and 2 0 are symmetric to Configurations 1 and 2, respectively.
For each principal configuration, we can establish certain relations between the intermediate states on the

basis of the particular wave ordering. These relations will then be used in the proposed Riemann solver. For
the sake of brevity, we present the relations that hold for Configurations 1 and 2 only. The relations for Con-
figurations 1 0 and 2 0 are determined easily by using their symmetry to Configurations 1 and 2.

3.1.1. Configuration 1

First suppose that the C�g wave is a rarefaction. By definition the solid contact discontinuity C0
s is on the left

of C�g . At the head of this rarefaction the ‘‘�’’ gaseous characteristic equals to ug1 � cg1 and at the tail it equals
to ug2 � cg2; see Fig. 1 for notations. Hence Configuration 1 is admissible only if ug1 � cg1 is larger than the
speed of the solid contact discontinuity us1 = us2:
ug1 � cg1 > us1: ð15Þ



Fig. 1. Principal wave configurations. Bold lines indicate shocks or rarefactions of the solid phase. Bold dotted lines indicate contact
discontinuities of the solid phase. Thin lines indicate shocks or rarefactions of the gaseous phase. Thin dotted lines indicate contact
discontinuities of the gaseous phase.
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Thus: ug1 > us1 + cg1 > us1, and therefore
ug1 > us1 () ugL > us1; ð16Þ

by virtue of the invariant w0

s3, Eq. (7c); see relative discussion in Section 2. This means that the gaseous phase
travels across the solid contact discontinuity from left to right.

Next suppose that the C�g wave is a shock. According to the Lax admissibility criterion, Lax [19], a shock is
admissible if the characteristics on both sides of the shock impinge on it. Thus,
ug1 � cg1 > uD > us1; ð17Þ

with uD being the shock speed.

In conclusion, the following condition should always hold for Configuration 1,
ug1 � cg1 > us1: ð18Þ

By combining this equation with the Andrianov and Warnecke criterion, Section 2, we easily deduce that the
admissible root of (8) in Configuration 1 is the smallest one.

3.1.2. Configuration 2

A similar analysis as above can be performed for this configuration also. The result is that for this config-
uration to be admissible, the following conditions should hold for C�g being either a rarefaction or a shock:
ug1 � cg1 < us1: ð19Þ

In other words, across the solid contact discontinuity, the speed of the gaseous phase relative to the solid phase
is subsonic. Further, by combining this equation with the Andrianov and Warnecke criterion, we easily deduce
that the admissible root of (8) in Configuration 2 is the largest one.
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On the other hand, by definition of Configuration 2, the speed of the solid contact discontinuity is on the
left of the gaseous one. Hence,
us1 < ug2: ð20Þ
This condition implies that, by virtue of the invariant w0
s3, cf. Eq. (7c), the following is true,
us1 < ug2: ð21Þ

In other words, the gaseous phase crosses the solid contact discontinuity from left to right.

We conclude this subsection by noting that for Configurations 1 0 and 2 0 the inequalities (18), (19) and (21),
respectively, are reversed.

3.2. Special configurations

3.2.1. Coalescence of solid and gaseous contact discontinuities
When the two contact lines coalesce, then the two phasial velocities are equal, us = ug, and k0

s becomes a
triple eigenvalue, k0

s ¼ k0
gð¼ ugÞ. However, the associated eigenvectors still provide a basis for R7. The coales-

cence of the eigenvalues also implies loss of an intermediate state in the Riemann problem (the state that lies
between the two contacts in Configuration 2 or 2 0).

With a straightforward calculation we find that the Riemann invariants across this ‘‘double’’ contact line
are
w0
s;g1 ¼ us; ð23aÞ

w0
s;g2 ¼ ug; ð23bÞ

w0
s;g3 ¼ pg; ð23cÞ

w0
s;g4 ¼ /sps þ /gpg: ð23dÞ
Due to the coalescence of the eigenvalues, relations (23a) and (23b) become identical. The above three Rie-
mann invariants, supplemented by the relation ug = us, suffice to determine the intermediate states in a Rie-
mann problem whenever the two contact lines coincide.

This particular configuration can only occur under very specific initial conditions. Further, numerically,
such a case is quite unlikely to be encountered because of the finite precision of the calculations in iterative
procedures and because of round-off errors. Nevertheless, this special configuration has been included in
the proposed Riemann solver for the sake of completion.

3.2.2. Gaseous shock travelling at the solid phase velocity

This is the case when Us = us � uD = 0 and the solid volume fraction may jump across the shock. (Recall
that if Us 6¼ 0, /s then remains constant across the shock and the non-conservative products become classical
functions thus allowing the derivation of the standard Rankine–Hugoniot relations as given in Section 2.)
First, we show that a gaseous shock can travel at the solid phase velocity only when it coincides with a solid
contact discontinuity. Suppose that the gaseous shock lies at the left of the C�s wave. The state on the left of C�s
is denoted by ‘‘L’’. The shock then propagates with a speed uD = usL. If the C�s wave is a rarefaction, the ‘‘–’’
characteristic at its head equals to usL � csL and it has to be larger than the gaseous shock speed. Thus:
usL � csL > usL. This is of course impossible because it implies a negative speed of sound. If the C�s wave is
a shock, we arrive at the same inequality by applying directly the Lax admissibility criterion. In conclusion,
a gaseous shock travelling at the local solid phase velocity cannot lie on the left of the C�s wave. A similar
analysis leads us to the conclusion that such a shock cannot lie on the right of the Cþs wave.

The only remaining possibility is for the shock to lie between the C�s and Cþs waves. In this case the solid veloc-
ity between C�s and Cþs becomes the speed of both the gaseous shock and the solid contact discontinuity. In sum-
mary, the case where Us = 0 occurs only when the gaseous shock and the solid contact discontinuity coincide.

As mentioned above, when Us = 0 the solid volume fraction may jump across the shock. Thus the non-con-
servative products are not classical functions anymore and standard jump conditions across the shock can not
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be derived. Nevertheless, as mentioned in [14], Eq. (14) remain valid and define a three-dimensional manifold in
R7. The invariants (7) across a solid contact are embedded in this manifold but they require that [gg = 0], hence
solutions satisfying (7) can not be classified as gaseous shocks. This implies that the determination of the inter-
mediate states in this particular configuration requires additional insight on the physical properties of this discon-
tinuity and new theoretical results on hyperbolic non-conservative equations. Nevertheless, it is unlikely that this
configuration occurs during numerical simulations because it requires that the shock speed and the solid contact
speed must be equal down to machine precision, just as in the case of coinciding contact line discontinuities.

3.2.3. Solid contact discontinuity inside a gaseous rarefaction

In this case we have, k0
s ¼ k�s , and the k0

s becomes again a triple eigenvalue. Here, however, the eigenvectors
of the system do not span the space R7 [14]. This is a case of parabolic degeneracy. Hyperbolic systems with
parabolic degeneracies arise in elasticity theory, Keyfitz and Kranzer [20,21] oil reservoir simulation, Schaeffer
and Shearer [22], Isaacson and Temple [23], etc. The equations can exhibit non-linear resonance at points with
such degeneracies.

As regards the two-phase flow models of interest, in [13] it has shown that when k0
s ¼ k�s , the volume frac-

tion remains constant across the solid contact discontinuity, [/s] = 0. (The gaseous pressure, density and
entropy also remain constant across the solid contact.) This corresponds to a completely decoupled case.
In other words, the Riemann problem is decoupled to two independent one-phase Riemann problems.

4. Description of the exact Riemann solver

In this section we present the structure and implementation of the proposed exact Riemann solver. First, we
determine whether there is an initial discontinuity on the volume fraction /s. As mentioned above, if there is
no such discontinuity then /s is constant on the entire t P 0 semi-plane and the two phases evolve indepen-
dently. In this case, the Riemann problem decouples to two independent single-phase ones. Each of these two
problems is solved with the Riemann solver of Collela and Glaz [24], which can treat a large class of convex
equations of state. (The special configuration of a solid contact inside a gaseous rarefaction that was discussed
in Section 3.2 is dealt precisely in this manner.)

If there is an initial discontinuity on /s, the proposed Riemann solver performs a sequential investigation of
the principal wave configurations with the order 2! 2 0 ! 1! 1 0, until an admissible solution is calculated. In
the following we describe the methodology of resolution for Configurations 1 and 2 only; Configurations 1 0

and 2 0 are solved in a completely analogous way.

4.1. Configuration 1

The objective is to determine the flow variables (pressure, density, velocity and volume fraction) for each
phase in the intermediate states, given the initial left and right states sL, sR and gL, gR; see Fig. 1. The most
difficult point is the calculation of the states of the two phases on one side of the solid contact discontinuity,
provided that the states on the other side are known.

First we note that it is trivial to find the solid volume fraction in the intermediate states. As mentioned in
Section 3, /s changes only across the solid contact discontinuity. Therefore, /s1 = /sL and /s2 = /sR. (The
gaseous volume fraction is calculated directly from the saturation condition, once /s is known). Further, in
this configuration, the state of the gaseous phase on the left side of the solid contact discontinuity is already
known, and equals to the initial left gaseous state gL.

Now let us assume that the solid velocity us1 is known. Then, the solid pressure ps1 and density qs1 can be
determined by employing the relations that hold across the C�s wave. If this wave is a rarefaction, i.e. usL < us1,
we employ thus Eq. (4) for w�s . If C�s is a shock, i.e. usL > us1, we employ the jump relations (13). This com-
pletes the calculation of the states on the left of the solid contact discontinuity.

We can then proceed to determine the states on its right by employing Eq. (7). In particular, according to
(7a), the solid phase velocity is conserved, us2 = us1, thus we can subsequently apply the relations that hold
across the Cþs wave to determine ps2 and qs2. To be more specific, we employ Eq. (4) for wþs if us2 < usR,
and Eq. (13) if us2 > usR. Hence the intermediate solid states s1 and s2 become known.
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Thus, the solution up to this point can be parameterized with respect to us1 (which was initially assumed
as known). In other words, we can set up an iterative procedure based on us1 to compute the solution up to
this point. The criterion of convergence of this iteration is the solid pressure ps2 because there are two ways
to compute this variable. The first way is via Eq. (7) once the states s1 and g1 are computed. (Note that state
g1 is calculated from Eq. (7) that hold across this contact. If two solutions exist for the system (7), the admis-
sible one is the smallest one; see relative discussion in Section 3.) The second way is via the relations that
hold across the Cþs wave (and the fact that us2 = us1). This iteration terminates once the two different numer-
ical predictions for ps2 become equal, or when we arrive at a non-admissible value for us1 (see discussion
below).

It remains to calculate the gaseous states g2 and g3 that lie on the right of the solid contact. In fact, from g1

to gR we have a classical single-phase Riemann problem, with g1 playing the role of the ‘‘initial’’ left state. This
problem is solved with the Riemann solver of Collela and Glaz [24], in which the relations that hold across the
waves are parameterized with pg2. In the iterative procedure that is set up with respect to pg2 the gaseous veloc-
ity ug3 can be determined in two different ways, and the iteration terminates once the two numerical predic-
tions of ug3 become equal.

In conclusion, Configuration 1 can be resolved numerically with two independent iterations based on us1

and pg2, respectively. In the present implementation, the secant method is used for these iterations because
it does not need an analytical expression for the derivatives of the functions involved. On the other hand, this
method requires two initial estimates for each of the parameterizing variables us1 and pg2. Initial estimates for
pg2 are determined according to the suggestions of Fryxell et al. [25].

The determination of initial estimates for us1 is more delicate because not all values of us1 are admissible.
In particular, it is possible that, for certain values of us1, Eq. (8) does not admit a solution. As mentioned in

Section 2, there will be no solution to (8) if F(q*) > 0 with q� ¼ M2

/2
g1cggg1

� � 1
cgþ1

for the case where the gaseous
state is a perfect gas. By expanding F(q*) we obtain:
F min � F ðq�Þ ¼ 1

2

M

/g1q�

 !2

þ
cg

cg � 1
gg1

M2

/2
g1cggg1

 !cg�1

cgþ1

� E

¼M
2
cg�1

cgþ1
1

2

ð/2
g1cggg1Þ

2
cgþ1

/2
g1

þ
cg

cg � 1

gg1

/2
g1cggg1

� 	cg�1

cgþ1

0BB@
1CCA� E; ð24Þ
where
M ¼ /gLqgLðugL � us1Þ; ð25Þ

E ¼ ðugL � us1Þ2

2
þ

cg

cg � 1

pgL

qgL

: ð26Þ
By defining a new constant
K ¼ ð/gLqgLÞ
2
cg�1

cgþ1
1

2

/2
g1cggg1

� 	 2
cgþ1

/2
g1

þ
cg

cg � 1

gg1

/2
g1cggg1

� 	cg�1

cgþ1

0BB@
1CCA; ð27Þ
Eq. (24) can be written as
F min ¼ KððugL � us1Þ2Þ
cg�1

cgþ1 � ðugL � us1Þ2

2
�

cg

cg � 1

pgL

qgL

: ð28Þ
This value has to be negative so that Eq. (8) admits a solution. In this expression all variables are known, ex-
cept us1. In fact, Fmin can be viewed as a function of the variable x ” (ugL � us1)2. The properties of this func-
tion are:
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F minð0Þ ¼ �
cg

cg � 1

pgL

qgL

;

lim
x!1

F minðxÞ ¼ �1;

dF min

dx
¼

cg � 1

cg þ 1
KðxÞ

�1
cgþ1 � 1

2
:

ð29Þ
The last relation implies that there is a maximum of Fmin, F �min � F minðx�Þ, with
x� � ððugL � us1Þ2Þ� ¼ 2
cg � 1

cg þ 1
K

 !cgþ1

2

: ð30Þ
The admissible values for us1 are those for which Fmin 6 0. Thus,

� if F �min 6 0, then Eq. (8) admits a solution for any value of us1.
� if F �min > 0, then Eq. (8) admits a solution for values of us1 such that x = (ugL � us1)2 does not lie between

x0 and x1, with x0 and x1 being the zeros of Fmin(x); see Fig. 2.

If F �min 6 0, we use the following initial estimates, uð0Þs1 ¼ ugL � cgL and uð1Þs1 ¼ ugL. If F �min > 0, then we first
seek initial estimates for us1 in the range of x 6 x0. The initial estimates of x are x(0) = 0 and x(1) = x0. Since
in this configuration it is valid that us1 6 ugL (cf. (16)), the initial estimates for us1 become uð0Þs1 ¼ ugL and
uð1Þs1 ¼ ugL �

ffiffiffiffiffiffi
x0
p

.
If the iteration does not converge for values of us1 so that x 6 x0, then we seek initial estimates for us1 in

the range of x P x1. The initial estimates of x are x(0) = x1 and x(1) = k x1, with k > 1. (The value k = 1.3
has worked well during our numerical experiments.) Thus, the initial estimates for us1 become
uð0Þs1 ¼ ugL �

ffiffiffiffiffiffi
x1
p

and uð1Þs1 ¼ ugL � k
ffiffiffiffiffiffi
x1
p

.
If this iteration does not converge either, then Configuration 1 can not be a solution to the Riemann prob-

lem. Further, we note that not all values of us1 are admissible. In particular us1 must satisfy us1 < ugL � cgL; see
Section 3.1. If the iterative procedure for us1 converges to a value that violates this condition, then again Con-
figuration 1 can not be a solution to the Riemann problem.

4.2. Configuration 2

As in the previous configuration, the volume fractions change only across the solid contact discontinuity, so
/s1 = /sL, /s2 = /sR and /g is given by the saturation condition. The other flow variables in the intermediate
states are calculated via two iterative procedures, an ‘‘exterior’’ one and an ‘‘interior’’ one.

The exterior iteration is based on pg1 and yields the values of qg1 and ug1 with the relations that hold across the
C�g wave; see Fig. 1. These equations are (4) if C�g is a rarefaction, or Eq. (13) if C�g is a shock. The interior iter-
ation is based on us1 and yields the values of ps1 and qs1 using the equations of the C�s wave; (5) if it is a rare-
faction or (13) if it is a shock. In this fashion the intermediate states on the left of the solid contact
Fig. 2. Plot of Fmin(x), x = (ugL � us1)2.
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discontinuity are computed. Next we calculate states s2 and g2 via the relations that hold across the C0
s and Cþs .

Further, state g3 is calculated using the relations that hold across the Cþg wave and the fact that pg3 = pg2.
The convergence criterion for the interior iteration is the solid pressure ps2 because there are two ways to

compute this variable. The first way is via Eq. (7) once the states s1 and g1 are computed. The second way is via
the relations that hold across the Cþs wave (and the fact that us2 = us1).

The convergence criterion for the exterior iteration is the gaseous velocity ug3, which can be calculated via
the relations that hold across the Cþg wave, and via the relations that hold across the C0

g wave, Eq. (6a).
As in the previous configuration, certain admissibility conditions exist for us1. In fact, these conditions read

the same as Eqs. (24)–(30), with gL being replaced by g1.
In conclusion, the iterative procedure works as follows :
Exterior iteration :

�Estimate pg1: Next calculate qg1 and ug1:

�

Interior iteration :

�Estimate us1: Then calculate ps1 and qs1:

�Calculate the variables on the right side of the solid contact

discontinuity; pg2; qg2; ug2 and us2:

�Calculate ps2 and qs2 from the relations for the Cþs wave:

�If the iteration has converged; then continue on the exterior iteration:

8>>>>>>>><>>>>>>>>:
�Calculate qg3 and ug3 from the relations for the Cþg wave:

�If the iteration has converged; then a solution to the Riemann problem is found:

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

As regards the special configurations, we note that the case of solid contact discontinuity inside gaseous rar-
efaction is treated in the beginning of the solver when we examine if there is no discontinuity in /s. The case of
coinciding contact discontinuities is examined explicitly if none of the four principal configurations have given
a solution. Finally, the case of coinciding gaseous shock and solid contact is not treated as there is currently no
solution available for this case; see discussion in Section 3.2.

We also note that the Riemann solver proposed herein does not include explicitly cases corresponding to
vanishing phases. Numerical experiments have shown that these cases can be resolved in a satisfactory manner
by assigning a very small value (e.g. 10�10) as the lower limit to the volume fraction of the vanishing phase; see
also Schwendeman et al. [18].

In order to examine the accuracy and robustness of the proposed algorithm we used the test cases employed
by Andrianov and Warnecke [13] for their ‘‘inverse Riemann solver’’. (The inverse Riemann problem consists
of finding the initial left and right states of the Riemann problem, given the intermediate states on the left and
on the right of the solid contact discontinuity.) All five cases were accurately calculated by our Riemann
solver.
5. Numerical methods for the integration of the non-conservative products

The presence of non-conservative products renders the numerical integration of the family of model (1)
quite challenging. The reason is that, as mentioned in the introduction, non-conservative products do not rep-
resent flux terms and, therefore, must be integrated as source terms. But this can not be done in a straightfor-
ward manner because these products can only be defined in the sense of distributions on the cell interfaces.

By now, several approaches have been already proposed for the integration of the non-conservative prod-
ucts appearing in (1); namely Schwendeman et al. [18], Andrianov and Warnecke [13] and Braconnier of the
Université Bordeaux [26]. It seems, however, that none of the existing methods is robust enough. In particular,
spurious oscillations can arise when the solid contact discontinuity approaches another wave or when the ini-
tial conditions imply significant jumps in /; see [13].

In this section we describe the first and second-order versions of the method proposed in [18]. Henceforth it
is referred to as ‘‘Method 1’’. It is based on exploiting information from the local Riemann solver that is solved
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on the cell interfaces in finite-volume algorithms. In [18] the authors integrate the non-conservative products
by assuming a smooth evolution of the variables inside a vanishingly thin solid contact discontinuity. Herein
we present an alternative formulation which is based on the representation of the solid volume fraction as a
Heavyside function. The final equations are the same as in [18]. Later in this article, the accuracy and robust-
ness of the first-order version of this method will be compared to those of [13,26]. For this reason, we provide a
brief description of these methods, too. Henceforth they are referred to as ‘‘Method 2’’ and ‘‘Method 3’’,
respectively.

First-order methods are in general too diffusive to be considered as sufficiently accurate. It is therefore impor-
tant to test the possibility of extending them to second-order accuracy. The implementation of Method 1 in sec-
ond-order algorithms (such as, for example, the MUSCL-type schemes, van Leer [27]) can be done in a relatively
easy manner; see also Schwendeman et al. [18]. Note that in [13] it has already been shown that Method 2 could
easily be extended to second-order, see [13] for more information. The extension of Method 3 to second-order
accuracy is relatively complex in, and for this reason it will not be considered herein.

5.1. Method 1

We first describe the first-order version of Method 1. To this end, let us consider the standard Godunov
scheme for the numerical integration of the system (1). Thus, the flow variables are approximated by piecewise
constant functions and a local Riemann problem is solved on the cell interfaces to advance the solution in
time.

Since the flow variables are constant inside each cell, the integrals of the non-conservative products can be
non-zero only because of (possible) jumps of /s across the solid contacts emanating from the cell interfaces (on
which a local Riemann problem is solved). Further, in the solution of the Riemann problem, the solid volume
fraction /s is a Heavyside function. In order to fix ideas, let U denote the speed of the solid contact discon-
tinuity and consider the change of variables x 0 = x � Ut. The expression for the solid volume fraction reads
/sðx0Þ ¼ /sLHð�x0Þ þ /sRHðx0Þ; ð31Þ

where H(x) denotes the Heavyside function, /sL, /sR are the left and right initial values of /s and
U = us1 = us2. (The notations are the same as in Section 4; see Fig. 1.)

Further, in a small region around the solid contact discontinuity, the momentum equation for the solid
phase is:
�U
d

dx0
ð/sqsusÞ þ

d

dx0
/sqsu

2
s þ /sps

� �
¼ pg

d/s

dx0
: ð32Þ
But in this region we also have that us = us1 = us2 = U is constant, see Eq. (7a). Thus, the last equation yields
d

dx0
ðps/sÞ ¼ pg

d/s

dx0
: ð33Þ
Using this result and Eq. (31), the non-conservative products of the system (1) read, at the vicinity of the solid
contact line,
us
o/s

ox
¼ us

d/s

dx0
¼ ð/sR � /sLÞUdðx0Þ; ð34Þ

pg

o/s

ox
¼ pg

d/s

dx0
¼ dðps/sÞ

dx0
¼ ð/sRps2 � /sLps1Þdðx0Þ; ð35Þ

pgus

o/s

ox
¼ pgus

d/s

dx0
¼ us

dðps/sÞ
dx0

¼ ð/sRps2 � /sRps1ÞUdðx0Þ: ð36Þ
where d(x 0) denotes the Dirac function. Let Dx denote the length of a computational cell. For a time Dt suf-
ficiently small the quantity Dx � UDt is positive and, therefore, the integrals of the non-conservative products

over xi�1
2
; xiþ1

2

h i
	 ½tn; tnþ1� are non-zero.

By taking into account the contributions of the solid contact lines emanating from both cell interfaces, we
arrive at the following expressions
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Z tnþ1

tn

Z x
iþ1

2

x
i�1

2

us

o/s

ox
dx ¼ DtðS1

i�1=2 � S1
iþ1=2Þ; ð37Þ
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iþ1

2

x
i�1

2

pg

o/s
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dx ¼ DtðS2

i�1=2 � S2
iþ1=2Þ; ð38Þ
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Z x
iþ1

2

x
i�1

2

pgus

o/s

ox
dx ¼ DtðS3

i�1=2 � S3
iþ1=2Þ; ð39Þ
with
S1
i�1=2 ¼

ð/sRps2 � /s1psLÞi�1=2; if Ui�1=2 > 0;

0; if Ui�1=2 < 0;


ð40Þ

S2
i�1=2 ¼

ðUð/sRps2 � /sLps1ÞÞi�1=2; if U i�1=2 > 0;

0; if U i�1=2 < 0;


ð41Þ

S3
i�1=2 ¼

ðUð/sR � /sLÞÞi�1=2; if U i�1=2 > 0;

0; if U i�1=2 < 0;


ð42Þ
and
S1
iþ1=2 ¼

ð/sRps2 � /s1psLÞiþ1=2; if Uiþ1=2 < 0;

0; if Uiþ1=2 > 0;


ð43Þ

S2
iþ1=2 ¼

ðUð/sRps2 � /sLps1ÞÞiþ1=2; if U iþ1=2 < 0;

0; if U iþ1=2 > 0;


ð44Þ

S3
iþ1=2 ¼

ðUð/sR � /sLÞÞiþ1=2; if U iþ1=2 < 0;

0; if U iþ1=2 > 0:


ð45Þ
All the quantities appearing in the above expressions are obtained as part of the solution of the local Riemann
problem that is solved on each cell interface. These relations can be used directly in the first-order Godunov
method, which reads
Qnþ1
i ¼ Qn

i �
Dt
Dxi

F n
iþ1

2
� F n

i�1
2

� 	
þ Dt

Dxi
Sn

i�1
2
�Sn

iþ1
2

� 	
; ð46Þ
where
Q ¼

/s

/sqs

/sqsus

/sqsEs

/gqg

/gqgug

/gqgEg

2666666666664

3777777777775
; F ¼

0

/sqsus

/sðqsu
2
s þ psÞ

/susðqsEs þ psÞ
/gqgug

/gðqgu2
g þ pgÞ

/gugðqgEg þ pgÞ

2666666666664

3777777777775
; S ¼

S1

0

S2

S3

0

�S2

�S3

2666666666664

3777777777775
: ð47Þ
The fluxes F in the above relation are calculated directly from the solution of the Riemann problem at each cell
interface.

We proceed with the description of the second-order version of this method. In particular, we are seeking a
second-order numerical approximation of the integrals of the non-conservative products inside each compu-
tational cell at tn+1/2. These integrals can be considered as the sum of two parts. The first parts are due to the
discontinuities of /s across the solid contact lines that lie inside the ith cell at tn+1/2. These parts equal to
Sk

iþ1=2 � Sk
i�1=2 whose expressions were given in (40)–(45).

The second parts are due to the variation of /s inside the cell. Let us denote these parts by bS k; k ¼ 1; 2; 3. A
straightforward manner to approximate them is the following. Assume, for example, that at tn+1/2 both the
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solid contact lines emanating from interfaces of the ith cell are inside this cell. These lines divide this cell into
three subintervals; see Fig. 3. (If there is only one solid contact line in the cell, then it is divided into two sub-
intervals, and so on.) Along the left and right subintervals, i.e. along the segments between the cell interfaces
and their corresponding solid contact lines, /s remains constant. Therefore, the integrals of the non-conser-
vative products along these subintervals are zero. The integrals along the middle subinterval are approximated
by assuming linear variation of the flow variables between the state on the right of the left solid contact line
and the state on left of the right one. These states are calculated by the Riemann solver. (If there is only one
solid contact line on the cell, say the one from the left interface, we consider the state on the right of the solid
contact line and the state on the interface, and so on.) In conclusion, we have
bS1 ’ 1

2
ðûs;iþ1=2 þ ûs;i�1=2Þð/̂s;iþ1=2 � /̂s;i�1=2Þ; ð48Þ

bS2 ’ 1

2
ðp̂g;iþ1=2 þ p̂g;i�1=2Þð/̂s;iþ1=2 � /̂s;i�1=2Þ; ð49Þ

bS3 ’ 1

2
ðp̂g;iþ1=2ûs;iþ1=2 þ p̂g;i�1=2ûs;i�1=2Þð/̂s;iþ1=2 � /̂s;i�1=2Þ: ð50Þ
In the above equations, and if Ui+1/2 P 0, the variables ûs;i�1=2, /̂s;i�1=2 and p̂g;i�1=2 are taken from the state on
the right of the solid contact that emanates from the left interface. Otherwise, they are taken from the state on
the left interface. Similarly, if Ui+1/2 6 0, the variables ûs;iþ1=2, /̂s;iþ1=2 and p̂g;iþ1=2 are taken from the state
on the left of the solid contact that emanates from the right interface. Thus overall, we have,
Z tnþ1

tn

Z x
iþ1

2

x
i�1

2

us

o/s

ox
dx ’ DtðS1

i�1=2 � S1
iþ1=2 þ bS 1Þ; ð51Þ

Z tnþ1

tn

Z x
iþ1

2

x
i�1

2

pg

o/s

ox
dx ’ DtðS2

i�1=2 � S2
iþ1=2 þ bS 2Þ; ð52Þ

Z tnþ1

tn

Z x
iþ1

2

x
i�1

2

pgus
o/s

ox
dx ’ DtðS3

i�1=2 � S3
iþ1=2 þ bS 3Þ: ð53Þ
Fig. 3. Values of ûs;i�1=2, p̂s;i�1=2, /̂s;i�1=2, ûs;iþ1=2, p̂s;iþ1=2 and /̂s;iþ1=2 for the second-order version of Method 1.
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5.2. Method 2

This method is presented in [13] and is based on a criterion put forward by Abgrall [17]. According to this
criterion, initially uniform pressure and velocity fields must remain uniform at all times. The integration of the
non-conservative products are approximated as:
Z tnþ1

tn

Z x
iþ1

2

x
i�1

2

us

o/s

ox
dx ’ un

s;i /nþ1=2
s;iþ1=2 � /nþ1=2

s;i�1=2

� 	
; ð54Þ

Z tnþ1

tn

Z x
iþ1

2

x
i�1

2

pg

o/s

ox
dx ’ Dtpn

g;i /nþ1=2
s;iþ1=2 � /nþ1=2

s;i�1=2

� 	
; ð55Þ

Z tnþ1

tn

Z x
iþ1

2

x
i�1

2

pgus

o/s

ox
dx ’ Dtpn

g;iu
n
s;i /nþ1=2

s;iþ1=2 � /nþ1=2
s;i�1=2

� 	
: ð56Þ
The quantities un
s;i and pn

g;i are the solid velocity and the gaseous pressure,respectively, in cell i at time t = n Dt.

The quantities /n�1=2
s;iþ1=2 and /nþ1=2

s;iþ1=2 are the solid volume fraction at the left and right cell interfaces, respectively,

calculated with a Riemann solver at time t = (n + 1/2)Dt. An extension to second-order accuracy for this
method can be found in [13].

5.3. Method 3

This method is based on solving local Riemann problems on the cell interfaces at time t = (n + 1)Dt. In
order to fix ideas, let q be a ‘‘conservative’’ variable, /a, qa, qaua, qaEa, a = g, s. The profile ~qðx; tnþ1Þ of q inside
each cell can be constructed by piecing together the Riemann solutions. The solution can then be advanced in
time by calculating the cell average of ~qðx; tnþ1Þ,
qnþ1
i ’ 1

Dx

Z x
iþ1

2

x
i�1

2

eqðx; tnþ1Þdx: ð57Þ
The advantage of this method is that it does not require the calculation of fluxes on the cell interfaces. There-
fore, a direct numerical integration of the non-conservative products is not needed. On the other hand, this
method is cumbersome to implement. Further, its extension to second-order accuracy is quite complex.

6. Numerical results

In this section, we present numerical results for four different shock-tube problems and compare the accu-
racy of the three methods presented above. The proposed Riemann solver is employed in all simulations. The
computational domain is of length L = 1 and is divided uniformly in 300 cells. The CFL number is fixed at
CFL = 0.8. Further, the initial discontinuity is always located at x = 0.5.

6.1. Test 1

In this test, both phases are perfect gases with cs = cg = 1.4. The initial conditions are the following:
Phase a
 /aL
 uaL
 qaL
 paL
 /aR
 uaR
 qaR
 paR
s
 0.4
 0
 1
 1
 0.8
 0
 2
 2

g
 0.6
 0
 0.5
 1
 0.2
 0
 1.5
 2
Fig. 4 contains plots of the numerical results at time t = 0.1 obtained with Method 1. It can be observed
that they are in good agreement with the exact solution, corresponding to configuration 2 0. All contact discon-
tinuities, shocks and rarefactions of each phase are well-captured. The results obtained with Methods 2 and 3
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are practically identical to those obtained with Method 1. For this reason, these results are not included in
Fig. 4. This situation, i.e. all three first-order methods yielding identical results was observed in a large variety
of initial conditions.

On the other hand, the second-order version of Method 1 provides, as expected, an improvement to the
fidelity of the simulations. This can be clearly seen in Fig. 5 that contains plots of the gas density for the test
case in hand.

6.2. Test 2

In this test case, the gaseous phase is a perfect gas with cg = 1.4, whereas the solid phase is a stiffened gas.
Thus the equation of state of the solid phase reads,
es ¼
ps þ csp

qsðcs � 1Þ ; ð58Þ
where cs = 3 and p = 100.
The initial conditions are the following :
Phase a
 /aL
 uaL
 qaL
 paL
 /aR
 uaR
 qaR
 paR
s
 0.4
 0
 800
 500
 0.3
 0
 1000
 600

g
 0.6
 0
 1.5
 2
 0.7
 0
 1
 1
The exact solution at t = 0.1 and the results obtained with the second-order version of Method 1 are plotted
in Fig. 6. In this figure it can be observed that the numerical solution is in good agreement with the exact one.
Further, the smearing of discontinuities due to numerical diffusion is sufficiently small.

6.3. Test 3

In the third test, both phases are perfect gases with cs = cg = 1.4. The initial conditions are :
Phase a
 /aL
 uaL
 qaL
 paL
 /aR
 uaR
 qaR
 paR
s
 0.8
 0.3
 2
 5
 0.3
 0.3
 2
 12.8567

g
 0.2
 2
 1
 1
 0.7
 2.8011
 0.1941
 0.1
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These conditions correspond to those of Test 1 in [13], and should produce a simple solid contact discon-

tinuity, i.e. all other waves should vanish. This is a particularly challenging problem to simulate numerically;
in [13] the authors employed Method 2 with an approximate Riemann solver and observed spurious oscilla-
tions in the numerical solution.

The numerical solutions are plotted in Fig. 7. It can be observed that the first-order version of Methods 1
and 3 produce practically identical results, whereas the results with Method 2 are less accurate. However, none
of these methods deemed capable of producing results with negligible numerical artifacts. In fact, although
these artifacts are small in the solid phase variables, they are significant in the gaseous phase variables, espe-
cially in the gas velocity field. More importantly, the spurious oscillations did not disappear with grid
refinement.

6.4. Test 4

In the last test, both phases are again perfect gases with cs = cg = 1.4. The initial conditions are the
following:
Phase a
Fig. 9. Test 4. Exact
Dx = 1/1000 (dashed
/aL
ρ

solution (solid
line).
uaL
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

g

line) and nume
qaL
G

rical solutions f
paL
0 0.1 0
x

aseous phase

or the gaseous
/aR
.2 0.3 0.4

density at t = 0.
uaR
0.5

1 with Dx = 1/3
qaR
00 (dotted line)
paR
s
 0.9
 0.9
 1
 3
 0.2
 0
 1
 1

g
 0.2
 0
 1
 1
 0.8
 1
 1.5
 2
These initial conditions constitute a difficult test, because they imply a strong discontinuity in the volume
fraction. Fig. 8 contains plots of the exact solution, corresponding to Configuration 2 0, and the numerical
results obtained with the different methods.

Again, all of them produce numerical errors. These errors can be observed in the vicinity of the solid
contact discontinuity, which is widely smeared, but also near the gaseous contact discontinuity across which
the jump in the gas density is poorly calculated. By refining the grid to 1000 cells, it was observed that the
solid contact discontinuity becomes less smeared, but the gas density near the gaseous contact is again poorly
calculated; see Fig. 9. It is also interesting to mention that Methods 1 and 3 produced smaller errors than
Method 2.

The numerical results in Tests 3 and 4 provide a strong indication that none of the three methods tested
herein is sufficiently robust to handle strong volume fraction jumps. Thus, further study is needed to derive
and
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improved algorithms for integrating the non-conservative products that are sufficiently robust and do not pro-
duce spurious oscillations.

7. Discussion on the ill-posedness of the Riemann problem

As mentioned in Section 3, the solutions to the Riemann problem can be classified into four principal con-
figurations; see Fig. 1. For each of these configurations there are certain admissibility criteria relative to the
ordering of the waves, and to the Andrianov and Warnecke criterion, Eqs. (15)–(21). Once a configuration
fulfills these criteria, then a solution to the Riemann problem exists from this configuration.

However, the admissibility criteria of each principal configuration are not mutually exclusive. Further, they
do not cover the entire range of parameters involved. This simply means that there can be initial conditions for
which the Riemann problem admits more than an unique entropy-satisfying solutions or for which it does not
admit a solution at all. Thus, the Riemann problem can be ill-posed.

The numerical experiments of [13] confirmed that such initial conditions do exist. Cases of non-uniqueness
or non-existence of solutions to the Riemann problem have also been predicted in our numerical simulations.
As regards the non-uniqueness of solutions in particular, we observed that, under certain initial conditions,
there was one solution from Configuration 1 and another one from Configuration 2, while for other initial
conditions we would get one solution from 1 0 and another one from 2 0. Multiple solutions with other pairings
of configurations were not predicted in our simulations.

To illustrate the issue of ill-posedness let us consider a shock tube problem with the following initial con-
ditions, true
Phase a
 /aL
Fig.
uaL
A
dm

is
si

bl
e 

co
nf

ig
ur

at
io

ns

Configuration 1

10. Admissible c
qaL
 

Configuration 2

onfigurations to
paL
usL

 Configuration 2

the Riemann
/aR
0 1

’ 

Configuration 1’

problem as a
uaR
2

function of usL.
qaR
 paR
s
 0.5
 usL
 2.1917
 3
 0.9
 �1.1421
 0.6333
 2.5011

g
 0.5
 �0.789
 6.3311
 1
 0.1
 �0.6741
 0.4141
 0.0291
We assume that both phases are ideal gases, with cg = cs = 1.4. All initial conditions are fixed, except the
left solid phase velocity, usL. Numerical solutions to this problem are obtained for different values of usL. In
Fig. 10 we represent schematically the principal configurations that converge to an admissible solution for the
Riemann problem as the parameter usL varies.
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In this figure we can observe that when �1.0 < usL < �0.59, the solution is not unique. Instead, there are
two solutions, from Configurations 1 0 and 2 0, respectively. Both solutions satisfy the entropy criterion. At this
point it is interesting to mention that when usL = �0.995, the initial conditions correspond to those of Test 4 in
[13], for which the authors observed differences between numerical results and exact solution. As a matter of
fact, however, this is a case of existence of two solutions, and the numerical result in [13] simply corresponds to
the second solution of the Riemann problem (see Fig. 11).

Non-uniqueness of solutions has also been encountered in the compressible, quasi-1D duct flow equations
[13,28], in the shallow-water equations [29], and elsewhere. In sofar, various propositions have been put for-
ward to select the physically relevant, ‘‘correct’’, solution when multiple solutions are present. In particular,
the authors in [13] suggest that non-uniqueness of solutions in the quasi-1D duct flow model is due to the fact
that this model can not describe multi-dimensional effects. Further, they compared solutions from the quasi-
1D flow model with those obtained by multi-dimensional calculations and they concluded that the physically
relevant solution corresponded to the maximal entropy increase. Thus, they proposed to employ the entropy-
rate admissibility criterion of Dafermos [30]. According to this criterion, the correct solution is the one whose
entropy increases at maximum rate.

This idea can be particularly relevant to two-phase flows because the duct-flow equations are really a special
case of the two-phase flow models of interest. However, we note that the criterion of Dafermos [30] has been
established for conservative systems. In particular, Dafermos has shown that in the case of such systems his
criterion is completely equivalent to the viscosity criterion (according to which the correct solution should cor-
respond to the viscous solution in the vanishing viscosity limit). Thus, for extending the Dafermos criterion in
the two-phase flow models of interest, it would make sense to first apply the viscosity criterion, and then try to
establish the equivalence between the two criteria. Such equivalence has not been demonstrated yet. Therefore,
at the present time, there is not a firmly established criterion to select the physically more relevant solution.

Returning to the numerical example above, we observe that when �2.46 < usL < �1.51, there is no solution
to the Riemann problem; see Fig. 10. Further numerical experiments predicted that initial conditions for
which there is no solution are not special cases but do arise often. As another example, consider a shock tube
problem in which there is no jump in the volume fraction, so /L = /R. This means that both phases are decou-
pled, and we can consider initial conditions such that the solid contact discontinuity lies inside a gaseous rar-
efaction. In this case there is an unique solution and it corresponds to the special configurations discussed in
Section 3.2.

However, when perturbing slightly the volume fraction on one side, say /L = /R + e with e an arbitrarily

small value, then the Riemann problem does not admit a solution anymore. The non-existence of solutions for
e arbitrarily small indicates a pathological situation and, in our opinion, there are two possible explanations
for it.

The first possible explanation is that the source terms of the two-phase flow models may influence the evo-
lution of the initial condition immediately. Then, the solution of the non-homogeneous Riemann problem
would not converge to the solution of the corresponding homogeneous one as time tends to zero. In other
words, the slopes of the waves of the non-homogeneous problem at t = 0 do not coincide with the straight
lines representing the centered waves of the homogeneous, self-similar problem. If this is the case, the design
of numerical schemes for the two-phase models of interest should be based solely on the non-homogeneous
Riemann problem.

The second possible explanation for the non-existence of solution is a fundamental breakdown of the valid-
ity of the two-phase models examined herein. In other words, it may be questionable whether such models are
capable to describe physical phenomena in a sufficiently wide range of conditions. If this is the case, then one
or more of the principal assumptions that were made in deriving these models are wrong. For example,

(i) The assumption that the volume fraction /s is enough to describe the micro-structure of the system
might be incorrect. In fact, due to this assumption one finds that the solid phase does not support shear
in equilibrium which is manifestly incorrect. Thus the viscosity of the solid phase, at least, should be
taken into account even when compressibility effects are dominant. The two-phase model of Papalexand-
ris [7] considers $/s as an additional variable related to the microstructure of the mixture. The addition
of this variable introduces non-Newtonian terms of the solid viscous-pressure tensor thus providing a
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dispersive regularization of the system. As a consequence of this regularization, the set of governing
equations becomes a non-hyperbolic system. Other types of dispersive regularization (terms responsible
for mixture inertia) have been proposed in [16].

(ii) Two-phase flows are essentially multi-dimensional and, therefore, representing them with one-dimen-
sional systems is of very limited use. If this turns out to be true, as in the case of duct flow [13], then
the derivation of numerical schemes becomes even more challenging because insofar all such schemes
rely on 1D Riemann solvers.

(iii) The form of the volume fraction Eq. (1g) essentially implies that the gas–solid interface moves at the
solid phase speed. This might be incorrect. There exist hyperbolic models who assume a different inter-
facial velocity, for example Saurel and Abgrall [5]. A detailed mathematical analysis of these models is
presently lacking. However, it is expected that physically plausible interfacial velocities would still result
in linear degeneracy of the corresponding characteristic field.

Finally, it is important to mention that the ill-posedness of the Riemann problem is not of theoretical but of
computational interest also. Indeed, even if we try to solve numerically an initial value problem that admits an
unique solution, the simulation might stop because a local Riemann problem on a cell interface does not admit
a solution. This can be caused by round-off errors or numerical diffusion that change slightly the initial con-
ditions in a way that none of the wave configurations can produce an admissible solution.

8. Conclusions

In this article, a new numerical procedure for solving exactly the Riemann problem of compressible two-
phase flow models with non-conservative products has been proposed. In general, the solution of this Rie-
mann problem consists of six distinct non-linear waves: shocks, rarefactions and contact discontinuities.
The ordering of these waves in the x–t plane can be classified into four principal families of configurations.
Any of these configurations can yield an entropy satisfying solution if certain admissibility criteria are met.
The proposed solver examines sequentially the admissibility of these configurations and calculates the solution
to the Riemann problem through iterative procedures. Special configurations, corresponding to coalescence of
waves, are also included in the solver.

A particularly challenging part in the design of algorithms for the numerical treatment of the governing
equations is the accurate integration of the non-conservative products. Three existing methods that perform
this were compared through a series of numerical tests. It was predicted that in most circumstances all three
methods yield good results. In some cases, however, for example when the jump of the volume fraction across
the solid contact is strong, spurious oscillations can arise. These oscillations propagate in the computational
domain and their amplitude does not diminish with grid refinement. Our tests indicated that the first and third
method produce smaller artificial oscillations than the ones produced by the second method.

Finally, the issue of ill-posedness of the Riemann problem was illustrated through some simple numerical
experiments. In particular, it was shown that, depending on the initial conditions, the Riemann problem might
possess two solutions or no solution at all. In our view, this phenomenon indicates a breakdown of the validity
of the flow models which, therefore, necessitates a revision of the basic assumptions upon which these models
have been derived.
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